"Quantified Self" Devices

http://qs4eml.ltu.edu/quantified-self/qs-devices

  • PrioVR Pro motion tracking suit, including 16 sensors plus the chest hub sensor/wireless transmitter. Sensors are located on the hands, lower arms, upper arms, chest, head, upper legs, lower legs, shoulders, feet, and torso. High-performance inertial sensors provide 360 degrees of low-latency, real-time motion tracking without the need for cameras, optics, line-of-sight, or large, awkward equipment.
  • Shimmer wireless system that includes integrated physiological sensors, data storage and low-power communication capabilities for developing new consumer electronics applications to allow researchers, clinicians, or individuals to quantify and track their personal health and wellness. The sensors include; GPS, various accelerometer and inertial sensors, pressure sensors, temperature sensors, EMG and EKG sensors, and strain gage or other auxiliary inputs. The development kit is designed for custom hardware and software applications and testing with both Windows computers and Android mobile devices.
  • Xbox Kinect Sensor is a motion sensing input device by Microsoft. Designed as a webcam-style add-on peripheral, it enables users to control and interact with their console/computer without the need for a game controller, through a natural user interface using gestures and spoken commands.
  • Wii Balance Board uses Bluetooth technology and contains four pressure sensors that measure the user’s center of balance and vertical ground reaction force.
  • Leap Motion controller is a small USB peripheral device which is designed to be placed on a physical desktop, facing upward. Using two monochromatic IR cameras and three infrared LEDs, the device observes a distance of about 1 meter. Markerless motion videos at 300 frames per second are analyzed to determine 3D position data of the hands. A user can perform computer interface tasks such as navigating a website, using pinch-to-zoom gestures on maps, high-precision drawing, and manipulating complex 3D data visualizations.
  • Nike+ Shoe Sensor Kits consist of 2 insole devices each containing a 3-axis accelerometers and flexible electronics consisting of 4 pressure sensors and a fixture to hold a puck (rechargeable power and controller that connects the sensors and transmits data over Bluetooth). There are also iOS apps for wirelessly receiving and displaying sensor information.
  • Myo gesture control armband reads the muscle activity in your forearm and gives you touch-free control of technology with hand gestures and motion. Out of the box, the Myo armband detects five distinct hand gestures and motion to wirelessly control technology. The Myo armband uses Bluetooth Smart to connect to Mac, Windows, iOS, and Android devices.
  • Triax Smart Impact Monitor is a lightweight, impact sensing and reporting device, intended for using during sports activities where there is a possibility of head impact injury. The device may be comfortably worn during sports activities using either a headband or skullcap style holder. It will record all impacts and accelerations greater than a pre-programmed set-point. All measurements are transmitted in real time to a nearby base monitoring unit using a low power wireless link.
  • NeuroSky MindWave safely measures and outputs the EEG power spectrums (alpha waves, beta waves, etc), eSense meters (attention and meditation) and eye blinks. The device consists of a headset, an ear-clip, and a sensor arm. It can be used with a wide variety of games, braintraining, education, and other brain-computer interface applications.
  • Phyode W/Me Wellness Tracker analyzes your body as a system to show your mental and physical state, such as emotions and vitality. The Rhythmic Breathing Coach can be used to increase endurance and reduce stress.
  • Withings Smart Body Analyzer is quick measure of your weight, body fat percentage, heart rate, and the room air quality. Each measurement is recorded in the mobile app and plotted so you can easily track your progress over time.
  • iHealth Wireless Blood Pressure Wrist Monitor includes advanced motion-sensor technology and a user-friendly mobile app, to simply guide the user to take a measurement or compare your previous systolic, diastolic and pulse rate numbers from their smartphone or tablet.
  • Polar T34 Chest Belt Heart Rate Transmitter monitors and then wirelessly transmits your heart rate data from the chest strap to a Polar WearLink+ compatible receiver.
  • e-Health Sensor Platform V2.0 allows Arduino and Raspberry Pi users to perform biometric and medical applications where body monitoring is needed by using 10 different sensors: pulse, oxygen in blood (SPO2), airflow (breathing), body temperature, electrocardiogram (ECG), glucometer, galvanic skin response (GSR - sweating), blood pressure (sphygmomanometer), patient position (accelerometer) and muscle/eletromyography sensor (EMG). Biometric information gathered can be wirelessly sent using any of the 6 connectivity options available: Wi-Fi, 3G, GPRS, Bluetooth, 802.15.4 and ZigBee depending on the application.

    quantified self devices
     Examples of “Quantified Self” devices related to biomechanics.